
Design of a Cordic Based Radix-4 FFT Processor

Ajay S. Padekar
BVDU, College of Engineering,

Pune, India.

Prof. S. S. Belsare
Department of E & TC,

BVDU, College of Engineering, Pune, India.

Abstract- The digital signal processing has been dominated by
microprocessors with enhancements such as special
addressing modes and single cycle multiply-accumulate
instructions. While these processors offer extreme flexibility
with low cost, they are often not fast enough for most of DSP
tasks. The arrival of reconfigurable logic computers offer
hardware solutions for higher speeds at costs which are less
than traditional software approach. Unfortunately, algorithms
used for these micro-processor based systems cannot be
mapped into hardware. In such hardware efficient algorithms
there is a class of solutions for trigonometric functions that
use shifts and adds in its operation. The trigonometric
functions are found out using vector rotations, while other
functions like square root are realized using an incremental
expression. The trigonometric algorithm is called Coordinate
Rotation Digital Computer known as CORDIC. This
CORDIC algorithm is further used in radix-4 FFT for faster
computation. While converting samples taken in real time
into equivalent frequency domain samples FFT computation
is used in which twiddle factor computation is done using
CORDIC.

Keywords- FFT, Radix-4, CORDIC, Complex Multiplier.

I. INTRODUCTION

FFT processor based on FPGA has widely used in
signal processing, image processing and other fields. It has
the characteristic with high parallel and throughput, and
can meet some high real time computing by using the
FPGA device. Compared with commonly FFT processor by
DSP or PC processing, it has a certain advantage in
speed.in this paper in-place computation is used and for
complex multiplication CORDIC algorithm is used which
enhance the speed of FFT computation.[1][7]

Using FFT, signals can be moved to the frequency
domain where filtering and correlation can be performed
with fewer operations. The design of a radix-4 FFT
processor based on CORDIC algorithm presented in this
paper. The processor is implemented in a FPGA that is
characteristics of high effectiveness, low cost, short
development cycle, and a satisfactory performance. The
selection of the CORDIC algorithm for implementing basic
butterfly operation for the FFT which excludes the need of
storing the twiddle factors and angles saves a lot of
hardware compared to other techniques. A dual port
memory block and corresponding addressing scheme are
used for in-place data access. The address generator block
needed for fetching data from and writing outcomes into
the dual port memory in proper sequence, is also combined
within the chip which includes the controller as well.[2][7]

The proposed CORDIC algorithm reduces the
need of storing the twiddle factors as well as angles, due to
that significant area saving with no negative impact on its
performance. The rest of the paper is arranged as follows.

In section II Radix-4 FFT and fundamentals of CORDIC
algorithm are described. Then in section III architecture of
CORDIC based FFT is described. The experimental results
are provided in section IV and finally paper is concluded in
section V.[1][4]

II. FFT AND CORDIC ALGORITHM

A. Radix-4 FFT Algorithm-

The N-point discrete Fourier transform is defined by-
 ܺ(݇) = ∑ .(݊)ݔ ேܹ௡௞ேିଵ௡ୀ଴ ݇ = 0,1, … . , ܰ −1, ேܹ௡௞ = ݁ି௝మഏಿ௡௞ (1)

The radix-4 decimation-in-time FFT algorithm is

described briefly in the following equations. The N-point
input sequence is split into four subsequences, x(4m),
x(4m+1), x(4m+2), x(4m+3), where k = 0, 1, ... , N/4-1.
Thus DFT of the radix-4 decimation-in-time can be
expressed as: ܺ(݇) = ෍ .(4݉)ݔ ேܹସ௠௞ே/ସିଵ

௠ୀ଴ +	 ෍ 4݉)ݔ + 1). ேܹ(ସ௠ାଵ)௞ே/ସିଵ
௠ୀ଴+	 ෍ 4݉)ݔ + 2). ேܹ(ସ௠ାଶ)௞ே/ସିଵ
௠ୀ଴+ ෍ 4݉)ݔ + 3). ேܹ(ସ௠ାଷ)௞ே/ସିଵ
௠ୀ଴

(2)

Let ேܹସ௠௞ = ேܹ/ସ௠௞, ேܹ௞ = 	ܹ ௣, A = 	∑ .(4݉)ݔ ேܹ/ସ௠௞ே/ସିଵ௠ୀ଴ , B

= 	∑ 4݉)ݔ + 1). ேܹ/ସ௠௞ே/ସିଵ௠ୀ଴ , .

C = 	∑ 4݉)ݔ + 2). ேܹ/ସ௠௞ே/ସିଵ௠ୀ଴ , D = 	∑ 4݉)ݔ +ே/ସିଵ௠ୀ଴3). ேܹ/ସ௠௞, then each Eq. (2) can be written as:
X(k) = A + BWp + CW2p + DW3p
X(k + N/4) = A - j.BWp - CW2p + j.DW3p
X(k + N/2) = A - BWp + CW2p - DW3p
X(k + 3N/4) = A + BWp - CW2p – j.DW3p

(3)

Eq.(3) can be expressed as Eq.(4) in a matrix form
according to the characteristic of ேܹ௡௞.

൦ܦ′ܥ′ܤ′ܣ′൪ = 	 ൦
1 1 1 11 −݆ −1 ݆1 −1 1 −11 ݆ −1 −݆൪	 . ൦

ଷ௣൪ܹܦଶ௣ܹܥBW௣ܣ = ܳ	. ൦ ଷ௣൪ܹܦଶ௣ܹܥBW௣ܣ
Where
A’ = X(k), B’ = X(k + N/4), C’ = X(k + N/2), D’ = X(k +
3N/4)

Ajay S. Padekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5125-5128

www.ijcsit.com 5125

Thus, a radix-4 butterfly computing unit can be
viewed as the input sequences first multiplied by a rotating
factor, then to a Q matrix left, which makes the total
number of multiplications for the radix-4 FFT much less
than that for the radix-2 FFT.

B. CORDIC algorithm

CORDIC algorithm was developed by J. E.
Volder. It is an iterative algorithm in which to calculate the
rotation of a vector only additions and shifts are taken. Fig.
1 shows an example of rotation of a vector Vi. Equations
(5) to (8) explain the steps for calculating the rotation.

Figure 1: Schematic diagram of the transformation of Vi (xi

, yi) to Vi+1 (xi+1 , yi+1)
௜ାଵݔ = ݎ cos(∝ +∅)= ݎ (cos ∝ cos∅ − sin ∝ sin ∅)= ௜ݔ	 cos∅ − ௜ݕ sin ∅

௜ାଵݕ (4) = ݎ sin(∝ +∅)= ݎ (sin ∝ cos∅ + cos ∝ sin ∅)= ௜ݕ	 cos∅ + ௜ݔ sin ∅
(5)

Let each rotation angle Ø be equal to arctan 2 − i, then: ݔ௜ାଵ = cos∅ ௜ݔ) − .௜ݕ 2ି௜ (6) ݕ௜ାଵ = cos∅ ௜ݕ) + .௜ݔ 2ି௜ (7)
Since Ø = arctan 2−i, cos Ø can be simplified to a constant
with fixed number of repetitions: ݔ௜ାଵ = ௜ݔ)ܭ − .௜ݕ 2ି௜) (8) ݕ௜ାଵ = ௜ݕ)ܭ + .௜ݔ 2ି௜) (9)
Where K = cos (arctan (2-i)) and di = ±1 . Product of K 's
can be represented by factor K which may be used as a
single constant multiplication either at the start or end of
the iterations. Then, (8) and (9) can be simplified as: ݔ௜ାଵ = ௜ݔ) − .௜ݕ 2ି௜ (10) ݕ௜ାଵ = ௜ݕ) + .௜ݔ 2ି௜ (11)
 di defines the direction of rotation and the sequence of all
di 's gives the final vector. di is given by:

di = -1 if zi < 0
= +1 if zi < 0

(12)

where zi is called as angle accumulator and given by
zi = zi – di . arctan(2-i) (13)

All operations described by Eqs. (10) - (13) can be
implemented by only additions and shifts. Therefore,
CORDIC algorithm does not require dedicated multipliers.

As shown in Eq.(1), the key operation of the FFT

is ݔ(݊). ேܹ௡௞, where ேܹ௡௞ = 	 ݁ି௝మഏಿ௡௞ is just the so-called
“twiddle factor”). This is equivalent to "Rotate x(n) by

angle −݆ ଶగே ݊݇” operation which can be easily calculated

by the CORDIC algorithm. Without normal complex
multiplication, CORDIC based butterfly can be very fast.

III. ARCHITECTURE OF CORDIC-BASED RADIX-4

FFT
The overall structure of the proposed CORDIC-

based FFT processor model is shown in Figure 7. The
entire model is made of the address generation unit, the
control unit, the dual port RAM unit, the 4-point butterfly
unit and the CORDIC twiddle factor generation unit. This
model is characterized by setting the parameter, sampling
points and the accuracy to meet the actual needs.

Figure 2: Architecture of CORDIC-based FFT processor.

The architecture of the FFT processor is shown in

Figure.2. Data is inputted into FIFO through Controller.
Address producer outputs read/write address and other
read/write control signal to the FIFO, and it is also in
charge of calculating of 16-dot FFT operation. Radix-4
butterfly unit completes 4-dot DFT. The angle of twiddle
factor calculated by the twiddle factor producer was
inputted into complex multiplier to perform complex
multiplication. The inputted complex data is expended to
16-bit through complex multiplication and radix-4
butterfly. The result of each stage of butterfly is
compressed to 14-bit complex data by a compressing
attenuator. The advantages with this architecture are high
data throughput, small area and a relatively simple control.

The FFT processor presented here is based on
radix-4 DIT algorithm in which the in-place computation is
utilized to achieve an efficient use of the memories. To
perform these operations concurrently, a dual-port RAM
has been employed. The control unit involves the timing
control of the data storage, reading and writing to make the
corresponding data and rotating factor coefficient flow into
the butterfly and CORDIC computing unit in sequence in
FFT operation. Data and addresses of the ‘twiddle factor’
can be easily generated by the counter. The address
generation logic is very simple and does not limit the
throughput of the system[2].

The CORDIC processor performs the vector
rotation to compute a set of trigonometric functions. The
principle idea of the CORDIC algorithm is to decompose a
rotation into a sequence of micro-rotations. The pipelined
CORDIC arithmetic unit can be obtained by decomposing
the CORDIC algorithm into a sequence of operational
stages[2].

Ajay S. Padekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5125-5128

www.ijcsit.com 5126

The CORDIC method can be implemented in two
different modes, known as the rotation mode and the vector
mode. In this paper, one uses x and y to represent the real
part and imaginary part of input and output vectors. In the
rotation mode, the co-ordinate components of a vector and
an angle of rotation are given and the co-ordinate
components of the original vector are computed after
rotation by a given angle In the vector mode, the co-
ordinate components of a vector are given and the
magnitude and angular argument of the original vector are
computed.

IV. RESULTS AND DISCUSSION

After the completion of this design architecture,
any hardware description language can be used to
implement it and checked for functionality correctness. In
this Paper, the design architecture is written in VHDL HDL
language using XILINX ISE tools. And FFT computation
decimation in time model is selected.
LOW LEVEL RADIX-4

Butterfly module is the main concern in code. As
shown in Figure 3 in1r, in1i, in2r, in2i, in3r, in3i, in4r, in4i

are the inputs to radix-4 module which are in terms of real
and imaginary values. When these inputs are given to
radix-4 module it computes FFT of respective inputs.
Outputs are complex values and can be given in terms of
out1r, out1i, out2r, out2i, out3r, out3i, out4r, out4i.

We have given two different set of inputs one is
after one clock cycle as [1 1 1 1] which produces output as
shown in Figure 3 and another set after two clock cycles as
[1 0 1 0] it can be shown as in Figure 3.

CORDIC OUTPUT

Figure 4 shows the output of CORDIC module in
this figure we can observe that CORDIC module takes iin
and qin as an input and gives iout and qout as output after
computation. Amplitudes are defined for angle computation
and every set of input is processed in tckhalf cycle and this
result is forwarded to Dual port RAM for storage for later
use. In each cycle one single input having real and
imaginary term is multiplied with the twiddle factor. And
final output will be derived.

Figure 3: Output of 4-point Radix-4 FFT algorithm on Xilinx ISE design suit 13.2

Figure 4 Output of CORDIC Module in Xilinx ISE design suit 13.2

Ajay S. Padekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5125-5128

www.ijcsit.com 5127

V. CONCLUSION
As FFT takes values in time domain and generates

equivalent sample values in frequency domain, 16 values of
samples are taken as an input to the design which is in time
domain and, using Decimation in Time method for FFT
computation output is generated in terms of frequency
samples. Due to in-place computation memory requirement
is reduced and using CORDIC for complex twiddle factor
generation and multiplication the speed of the computation
gets improved with less complexity another factor which
helps to improve speed is radix-4 algorithm which
computes the output in half the stages required for radix-2
algorithm.

REFERENCES

[1] Ahmed Saeed, M. Elbably, G. Abdelfadeel, and M. I. Eladawy;
“Efficient FPGA implementation of FFT/IFFT Processor”;
International journal of circuits, Systems and Signal Processing.

[2] Ren-Xi Gong, Jiong-Quan Wei and Dan Sun, Ling-Ling Xie, Peng-
Fei Shu and Xiao-Bi Meng; “FPGA Implementation of a CORDIC-
based Radix-4 FFT Processor for Real-Time Harmonic Analyzer”;
2011 eventh International Conference on Natural Computation.

[3] Oppenheim Alan V., Schafer Ronald W., with Buck John R.;
“Discrete Time Signal Processing” pp. 629-661.

[4] Proakis John G., Manolakis Dimitris G.; “Digital Signal Processing”
pp. 448-493.

[5] Shi Jiangi; Tian Yinghui; Wang Mingxing; Yang Zhe; “A Novel
design of 1024-point pipelined FFT processor based on CORDIC
algorithm”; Intelligent System Design And engineering Application
(ISDEA) 2012 second International Conference on Digital Object
Identifier.

[6] Long Pang; Bocheng Zhu; He Chen Electronics; “Design and
Realization of small point FFT processor based on twiddle factor
classification” Communications and Control (ICECC) 2011
International Conference On Digital Object Identifier.

[7] Ajay S. Padekar; Prof. S. S. Belsare; “Radix-4 FFT Architecture”;
International Journal of Advanced Research in Computer Science
and Software Engineering; Volume 4, Issue 5, May 2014 ISSN:
2277 128X.

Ajay S. Padekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5125-5128

www.ijcsit.com 5128

